Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando X‐ray Absorption Spectroscopic Characterization

Publication Type

Journal Article

Date Published

01/2021

Authors

DOI

Abstract

The polysulfides shuttle effect represents a great challenge in achieving high capacity and long lifespan of lithium/sulfur (Li/S) cells. A comprehensive understanding of the shuttle-related sulfur speciation and diffusion process is vital for addressing this issue. Herein, we employed in situ/operando X-ray absorption spectroscopy (XAS) to trace the migration of polysulfides across the Li/S cells by precisely monitoring the sulfur chemical speciation at the cathodic electrolyte-separator and electrolyte-anode interfaces, respectively, in a real-time condition. After we adopted a shuttle-suppressing strategy by introducing an electrocatalytic layer of twinborn bismuth sulfide/bismuth oxide nanoclusters in a carbon matrix (BSOC), we found the Li/S cell showed greatly improved sulfur utilization and longer life span. The operando S K-edge XAS results revealed that the BSOC modification was bi-functional: trapping polysulfides and catalyzing conversion of sulfur species simultaneously. We elucidated that the polysulfide trapping-and-catalyzing effect of the BSOC electrocatalytic layer resulted in an effective lithium anode protection. Our results could offer potential stratagem for designing more advanced Li/S cells.

Journal

ENERGY & ENVIRONMENTAL MATERIALS

Volume

4

Year of Publication

2021

Issue

2

ISSN

2575-0356

Organization

Research Areas